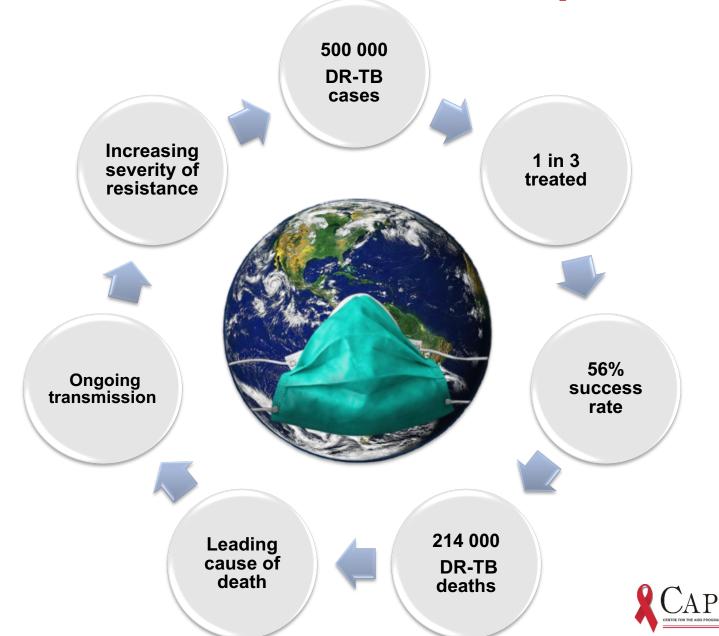


Individualised management of MDR and XDR-TB in South Africa using Whole Genome Sequencing (CAPRISA 020-INDEX Study)

RESIST TB Webinar 29 July 2020

Navisha Dookie, PhD

Scientist: CAPRISA HIV-TB Treatment Research Programme



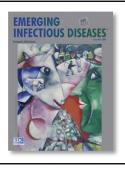
Overview

- Whole Genome Sequencing (WGS) for management of Drug-Resistant TB (DR-TB)
- INDEX Study Design
- Intervention with Case Study
- Implementation Challenges
- Further Research
- Summary

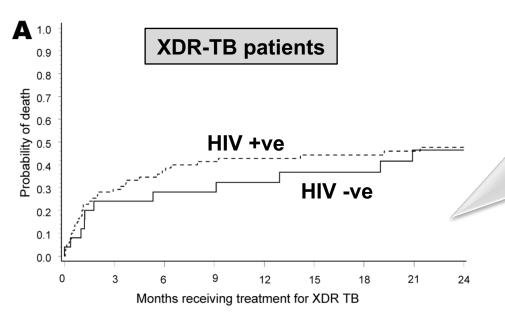
The Scale of the DR-TB Epidemic

WGS for personalized management of DR-TB

- New diagnostic and treatment approaches urgently warranted:
 - Delayed detection & incomplete resistance characterisation
 - Current culture-based & molecular diagnostic tools mis-diagnosis, inappropriate treatment initiation and amplification of drug resistance
- To overcome these challenges TB programs use standardized regimens
- Personalized management through WGS: a compelling alternative to conventional methods


Rationale

- Paradigm shift
 - From standard DR-TB regimen
 - To a personalised medicine approach
- WGS individualised treatment:
 - Demonstrated in high-income, low TB burden settings
 - Impact on outcomes: unknown
- INDEX Study: RCT in high-burden setting with increased prevalence of HIV co-infection and second-line drug resistance


DR-TB in South Africa

- South Africa has among the highest DR-TB incidence globally
- Accounts for 20% of all DR-TB cases in Africa
- KwaZulu-Natal Province 50% of the national DR-TB cases

Treatment Outcomes for Extensively Drug-Resistant Tuberculosis and HIV Co-infection

Max R. O'Donnell, Nesri Padayatchi, Charlotte Kvasnovsky, Lise Werner, Iqbal Master, and C. Robert Horsburgh, Jr.

XDR-TB OUTCOMES POOR

24 month outcomes (%):

• Cure & Completed: 22

Default: 16.7

Failure: 19.3

Died: 42

The Individualized M(X) Drug-resistant TB Treatment Strategy Study (INDEX)

Primary Objective

To determine if a WGS-derived individualized treatment approach in patients with drug-resistant TB will improve culture negative survival rates at 6 months post treatment initiation

Design

Randomized Controlled Trial

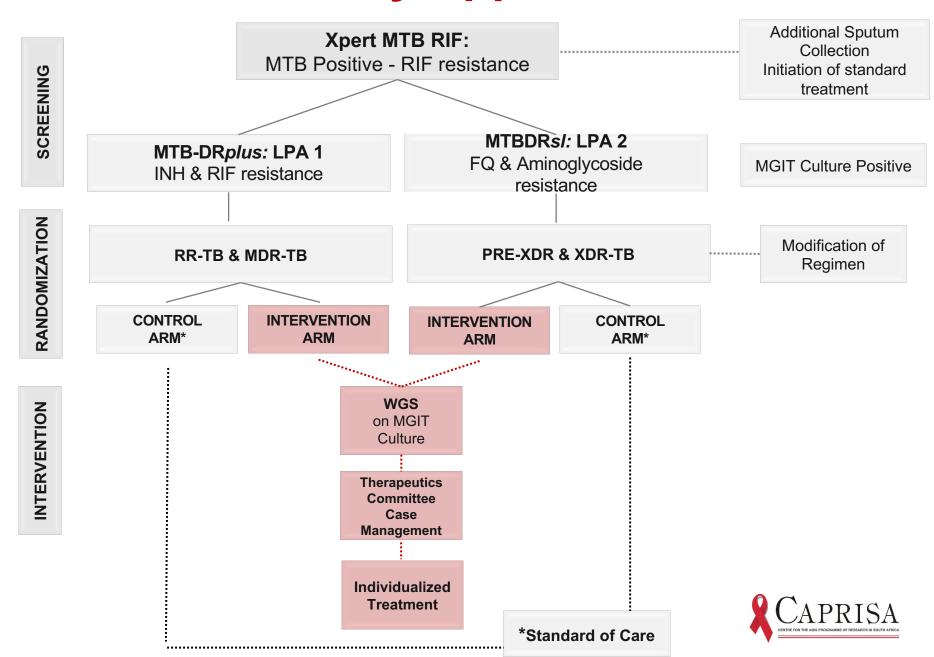
Hypothesis

Treatment success is one third higher with a WGS-derived individualized treatment approach

Duration

18 to 24 months

Population


Patients ≥ 18 years with pulmonary TB and at least RIF resistance

Sample Size 448

Primary Endpoint

Culture negative survival rates at 6 months post treatment initiation

Study Approach

WGS from MGIT Culture Therapeutics Committee Case Management Individualized Treatment

Analysis of WGS results using published literature and databases:

- Prevalence in clinical isolates and association with phenotypic susceptibility
- Grade mutations to direct inclusion or exclusion of drugs in regimen:
 - High Confidence: Drug Excluded from regimen: Frequent mutations with high a correlation between phenotypic and genotypic testing platforms.
 Allelic exchange/supporting data demonstrating association of mutation
 - Intermediate Confidence: Drug included in absence of available alternate drugs for an effective regimen. Mutations occurring at lower frequencies only detected in resistant isolate
 - Low Confidence: Drug is included in regimen. No association with resistance – mutations represent lineage markers or compensatory/fitness change

Selecting a personalized regimen:

- Therapeutics review committee comprising local and international DR-TB experts including scientists, facility-based DR-TB clinicians and a microbiologist
- Face-to-face or virtual team discussion using patients clinical and laboratory information together with WGS analysis
- · Current regimen reviewed for adequacy

- New regimen proposed using principles outlined by South African National Department of Health & WHO
- At least two members must be in agreement with analysis and recommendations to effect regimen change

Case Presentation

- 41 year old male presented at the specialist DR-TB referral hospital on 7th March 2019
- 2 week history of cough, night sweats, chest pain, weight loss & poor appetite
- Previous episode of TB in 2004 cured
- HIV co-infected on ART since 2004: tenofovir/lamivudine/efavirenz

MTB PROFILING:

Xpert MTB RIF/Ultra:

MTB Positive + RIF Resistance

LPA 1:

INH & RIF resistance

LPA 2:

Uninterpretable

Sputum Microscopy: Scanty Positive (7AFB/100

immersion fields)

MGIT Culture: Positive (13 days)

BASELINE CHEST RADIOGRAPH:

Extensive disease with consolidation of the right upper & middle lobes 07 March 2019

Dookie et al. CID May 2020

Patient Management

INITIAL TREATMENT REGIMEN: 9 month short-course

BEDAQUILINE: 200mg 3X week (400mg for 2 weeks initially)

Daily:

LINEZOLID 600mg

HIGH-DOSE ISONIAZID 900mg

LEVOFLOXACIN: 1g

CLOFAZAMINE: 100mg

PYRAZINAMIDE: 1.25g

ETHAMBUTOL: 1.2g

ART REGIMEN SWITCH:

Interaction between Bedaquiline and Efavirenz:

Tenofovir/emtricibine/nevirapine

DISCONTINUATION OF LINEZOLID:

1 month following treatment initiation due to anaemia

~25% decrease in haemoglobin level

Date	05 Mar 19	14 Mar 19	28 Mar 19	11 Apr 19	24Apr 19
Hb (g/dl)	11.4	12.0	10.3	8.9	9.7
eGFR	58	>60	>60	>60	-

WGS Results

Whole Genome Sequencing of M. tuberculosis

Genome Coverage

43

Drug	Gene	Nucleotide Change	Amino Acid Change	Frequency
Isoniazid inhA	Promoter (mabA)	c-15t		100 %
Isoniazid	inhA	t581c	Ile194Thr	100 %
Rifampicin	rpoB	c1349t	Ser450Leu	100 %
Ethambutol	embB	a916g	Met306Val	100 %
Pyrazinamide	pncA	c22t	Asp8Asn	100 %
Ethionamide	inhA	t581c	Ile194Thr	100 %

The mutations in rpoB, inhA promoter, embB, inhA and pncA are known resistance determinants. The mutation detected in the inhA promoter has been associated with cross-resistance to ethionamide.

WGS conducted by the National Institute of Communicable Diseases: Centre for Tuberculosis: MiSeq; Illumina V3.0 and bioinformatics analysis using the CLC Genomics Workbench v6.0.1

WGS Analysis

Drug Class	Drug	Call*	Description
Group One First Line	Isoniazid	R	inhA Promoter (mabA); c-15t - Results in low-level isoniazid resistance and ethionamide cross-resistance. High dose isoniazid can be included in the regimen. If co-occuring with a katG mutation, high-dose isoniazid resistance is assumed and thus, drug is excluded. Ethionamide excluded from regimen inhA; Ile194Thr (t581c)- Leung et al. 2005 described this mutation in 1 clinical isolate associated with an MIC of 1.0 mg/L. However, they conducted kinetic analysis to characterise the mutation. They found that is resulted in a decreased affainity for NADH-enzyme binding. Jagelski et al. 2015 subsequently reported the mutation in 2 inh mono-
			resistant isolates and 1 MDR isolate.
	Rifampicin	R	rpoB; Ser450Leu (c1349t) - Strong association with high-level resistance to RIF. Most common mutation associated with RIF R
	Ethambutol	R	embB; Met306Val (a916g) - High-level resistance to EMB. High frequency mutation associated with a four-fold increase in MIC.High indication for ethambutol resistance
	Pyrazinamide	R	pncA; Asp8Asn (c22t) – This mutation falls within the three 'hot-spot' regions of the pncA gene (codons 3-17; 61-85; 61-85). Only described in 1 isolate in systematic review of 2760 isolates, however, it ocuured as a double mutant (Ramirez-Busby). Described as high-confidence by Miotto et al. as mutation that affect the catalytic residues and amino acids recruited in the scaffold of the active site or directly/indirectly involved in the coordination of the Fe ²⁺ ions thus high-confidence for resistance. (Miotto 2014)
<u> </u>	Streptomycin	S	Wild Type
Group Two Second-Line Injectables	Aminoglycosides	S	Wild Type
Group Three	Fluoroquinolones	S	Wild Type
Group 4	Ethionamide	R	InhA Promoter (mabA); c-15t - cross-resistance between INH and ethionamide
	PAS	S	Wild Type
	Linezolid	S	Wild Type
	Bedaquiline	S	Wild Type
	Delamanid	S	Wild Type dence: LC = Low Confidence), S = Susceptible

^{*} Call: R=Resistance R (HC = High Confidence; IC = Intermediate Confidence; LC = Low Confidence) S = Susceptible

DST Results

Phenotypic Drug Susceptibility Testing (MIGIT Culture Based)			
Bedaquiline (1.0 mg/L)	Sensitive		
Clofazimine (1.0 mg/L)	Sensitive		
Isoniazid Low (0.1 mg/L)	Resistant		
Isoniazid High (0.4 mg/L)	Resistant		
Levofloxacin (1.0 mg/L)	Sensitive		
Linezolid (1.0 mg/L)	Sensitive		
Moxifloxacin Low (0.25 mg/L)	Sensitive		
Moxifloxacin High (1.0 mg/L)	Sensitive		

Individualized Regimen & Outcome

FACTORS CONSIDERED BY THERAPEUTICS COMMITTEE:

EXTENSIVE DISEASE: CHEST RADIOGRAPH ADDITIONAL *inhA* MUTATION SUPPORTED BY DST RESULT CONFIRMED PYRAZINAMIDE AND ETHAMBUTOL RESISTANCE

DECISION:

INDIVIDUALIZED 18 MONTH REGIMEN:

BEDAQUILINE: 200mg 3X week

LINEZOLID: re-challenge 600mg daily

LEVOFLOXACIN: 1g

CLOFAZAMINE: 100mg — Daily

TERIDIZONE: 750mg

CULTURE CONVERSION: MONTH 2

CURRENT STATUS: 15 months of treatment

END OF INTENSIVE PHASE-CHEST RADIOGRAPH:

Resolution of Disease 29 August 2019

Case Highlights

- Role of WGS when used with extended phenotypic DST in clinical case management:
 - Intensive phase contained 3 effective drugs only: bedaquiline, levofloxacin and clofazimine,
 - further reduction in number of effective drugs in continuation phase: levofloxacin and clofazimine
 - Could have led to amplification of resistance to key drugs and sub-optimal treatment outcomes
- WGS: Identification of additional inhA mutation, ethambutol and pyrazinamide resistance
 - Conventional tests lack these markers despite high background burden of resistance to these drugs
 - Inadequacy of commonly selected companion drugs
- Phenotypic resistance testing remains valuable:
 - New drugs and disputes with genotypic correlation of mutations

Implementation Challenges

- Individualized data-driven treatment provision challenging:
 - Lengthy turn-around time for culture-based WGS lack of assays for direct sequencing from sputum
 - Limited curated data on genotypic-phenotypic correlations available - comprehensive per patient review required
 - Need for phenotypic testing: new drugs and disputed mutations
 - Limited drug choices available for DR-TB
 - Limited utility of the genome sequence era of short-course standardized regimens utilizing new drugs
 - Overlapping drug toxicities important factor in treatment choice
 - Numerous changes to treatment guidelines over the course of the study

Further Research

1. Optimizing the clinical utility of WGS

- Direct sequencing from sputum using the Deeplex-MycTB assay
 targeted genotypic 15 drug panel
- Comprehensive phenotypic analysis

2. Evolving drug-resistance

 Sequencing of serial samples to understand the development of resistance and clinical significance of heteroresistance

3. Role of high-dose INH in DR-TB treatment

- Phenotypic analysis to understand the role of katG and mabA mutations
- Time-kill experiments

Summary

- Current diagnostic platforms do not effectively guide DR-TB regimen selection
- Diagnostic adjuncts such as WGS and DST offer an innovative solution to overcoming these complexities
- Standardized approach to DR-TB treatment potentially unsustainable as drugs are lost faster than they can replaced
- The INDEX study approach may offer potential strategy for the use of WGS for personalized management of DR-TB

Acknowledgements

INDEX Study Participants

INDEX Study Team

Prof Nesri Padayatchi (PI)

Prof Kogie Naidoo (Co-PI)

Dr Surie Chinappa

Avika Haridutt

Patience Mbatha

Zanele Msimango

Radha Narismmulu

Lorelle Pillay

NICD-Centre for Tuberculosis

Dr Nazir Ismail

Dr Shaheed Valley Omar

Dr Farzana Ismail

Funders

CAPRISA

EDCTP

National Research Foundation of South Africa

INDEX Therapeutics Committee

Dr Sunita Chotoo (King DinuZulu Hospital, KZN, South Africa)

Dr Richard Lessells (ID Specialist, KRISP)

Dr Max 'o Donnell (Pulmonologist, Columbia University)

Dr Neel Gandhi (Clinical Epidemiologist, Emory University)

Dr Alex Pym

Dr James Millard (AHRI)

